Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures.

Autor: Ghosh, Amalendu
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0862-7959
Abstrakt: Abstract: We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm\omega)$ with constant scalar curvature is either Einstein, or the dual field of $\omega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm\omega)$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega$) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
Databáze: Katalog Knihovny AV ČR