The use of radar and gauge measurements to estimate areal precipitation for several Czech river basins.

Autor: Sokol, Zbyněk, 1959-
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0039-3169
Abstrakt: Abstract: Two methods estimating areal precipitation for selected river basins in the Czech Republic are compared. The methods use radar precipitation (the radar-derived precipitation estimate based on column maximum reflectivity) and data from 81 on-line rain gauges routinely provided by the Czech Hydrometeorological Institute. Data from a dense network of climatological rain gauges (the average inter-station distance is approximately 8 km), the measurements of which are not available in real time, are utilized for the verification. The mean areal precipitation, which is used as the ground truth, is obtained by the weighted interpolation of the dense rain gauge network. The accuracy of the methods is evaluated by the root-mean-square-error. The first, pixel-related method merges radar precipitation with rain gauge data to obtain adjusted pixel values. The adjusting procedure combines radar and gauge values in one variable that is interpolated into all radar pixels. The adjusted pixel precipitation is calculated from radar precipitation and from the value of the combined variable. The areal estimates are determined by adding the corresponding pixel values. The second method applies a linear regression model to describe the relationship between the areal precipitation (dependent variable) and its estimates, which are determined from (i) non-adjusted radar precipitation and (ii) on-line rain gauge measurements interpolated into pixels. Classical linear regression, ridge regression and robust regression models are tested. Both the methods decrease the average areal error in comparison with the reference method, which uses the on-line rain gauge data only. The decrease is about 10% and 15% for the pixel-related and regression methods, respectively. When the estimates of the pixel-related method are included as predictors into the regression method then the improvement of accuracy is almost 25%.
Databáze: Katalog Knihovny AV ČR