Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch.

Autor: Luo, H. H.
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0300-3604
Abstrakt: Abstract: a1_Soil water deficit is a major limitation to agricultural productivity in arid regions. Leaf photosynthesis can quickly recover after rewatering and remains at a higher level for a longer period, thus increasing crop yield and water-use efficiency (WUE). We tested our hypothesis that leaf photosynthesis and root activity of water-stressed cotton (Gossypium hirsutum L.) plants could quickly recover after rewatering at a certain growth stage and it should not influence a cotton yield but increase WUE. Treatments in this study included two degrees of water stress: mild water stress (V1) and moderate water stress (V2) imposed at one of four cotton growth stages [i.e., S1 (from the full budding to early flowering stage), S2 (from early flowering to full flowering), S3 (from full flowering to full bolling), and S4 (from full bolling to boll-opening)]. The soil water content before and after the water stress was the same as that in the control treatment (CK, 70-75% of field capacity). Water deficit significantly reduced the leaf water potential, net photosynthetic rate, and stomatal conductance in cotton. The extent of the decline was greater in S2V2 treatment compared to others. Water deficit also reduced root activity, but the extent of inhibition varied in dependence on soil depth and duration. When plants were subjected to S1V1, the root activity in the 20-100 cm depth recovered rapidly and even exceeded CK one day after rewatering. An overcompensation response was observed for both photosynthesis and aboveground dry mass within one to three days after rewatering. Compared with the CK, S1V1 showed no significant effect on the yield but it increased total WUE and irrigation WUE.
Databáze: Katalog Knihovny AV ČR