Abstrakt: |
Abstract: Interaction between aluminum (Al) and boron (B) in Al accumulator species has not been characterized so far. In this work, tea [Camellia sinensis (L.) O. Kuntze] plants were cultivated hydroponically and treated with adequate (control) or low B supply (-B) without or with 300 μM Al (-B+Al) for 14 weeks. Growth of B-deficient plants was completely resumed by Al supplementation or even surpassed control plants regarding shoot biomass. Net photosynthetic rate was negatively influenced by the low B supply, and the Al treatment increased it up to the level of the control plants that was reflected in the higher content of saccharides. The activity of ascorbate peroxidase (APX) in the younger leaves decreased at the low B supply accompanied with an increased H2O2 content. The Al treatment increased the APX activity up to the level of the control plants simultaneously with the reduction of H2O2. Activities of superoxide dismutase (SOD) and peroxidase (POD) increased in the low B plants and the Al treatment augmented this effect. The content of malondialdehyde (MDA) in the leaves increased by low B but declined upon the Al treatment. In the Al-treated plants, the activity of nitrate reductase (NR) and the content of free α-amino acids exceeded those of the control plants, and nitrite concentration diminished. The shoot and root B content of the B-deficient plants supplemented with Al was similar with the B-sufficient ones. The results demonstrate that the up-regulation of C and N metabolism, the activation of antioxidative defense, and the enhancement of B uptake and transport were mechanisms for growth amelioration of the B-deficient plants by Al supplementation in tea. |