Abstrakt: |
Abstract: A method for variance component estimation (VCE) in errors-in-variables (EIV) models is proposed, which leads to a novel rigorous total least-squares (TLS) approach. To achieve a realistic estimation of parameters, knowledge about the stochastic model, in addition to the functional model, is required. For an EIV model, the existing TLS techniques either do not consider the stochastic model at all or assume approximate models such as those with only one variance component. In contrast to such TLS techniques, the proposed method considers an unknown structure for the stochastic model in the adjustment of an EIV model. It simultaneously predicts the stochastic model and estimates the unknown parameters of the functional model. Moreover the method shows how an EIV model can support the Gauss-Helmert model in some cases. To make the VCE theory into EIV model more applicable, two simplified algorithms are also proposed. The proposed methods can be applied to linear regression and datum transformation. We apply these methods to these examples. In particular a 3-D non-linear close to identical similarity transformation is performed. Two simulation studies besides an experimental example give insight into the efficiency of the algorithms. |