Positive solutions for elliptic problems with critical nonlinearity and combined singularity.
Autor: | Chen, Jianqing |
---|---|
Další autoři: | |
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: Consider a class of elliptic equation of the form -\Delta u - {\lambda\over{|x|^2}}u = u^{2^\ast-1} + \mu u^{-q}\quadin \Omega\backslash\{0\} with homogeneous Dirichlet boundary conditions, where $0\in\Omega\subset\mathbb{R}^N$($N\geq3$), $0 < q < 1$, $0 < \lambda<(N-2)^2/4$ and $2^\ast= 2N/(N-2)$. We use variational methods to prove that for suitable $\mu$, the problem has at least two positive weak solutions. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |