Positive solutions for elliptic problems with critical nonlinearity and combined singularity.

Autor: Chen, Jianqing
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
Abstrakt: Abstract: Consider a class of elliptic equation of the form -\Delta u - {\lambda\over{|x|^2}}u = u^{2^\ast-1} + \mu u^{-q}\quadin \Omega\backslash\{0\} with homogeneous Dirichlet boundary conditions, where $0\in\Omega\subset\mathbb{R}^N$($N\geq3$), $0 < q < 1$, $0 < \lambda<(N-2)^2/4$ and $2^\ast= 2N/(N-2)$. We use variational methods to prove that for suitable $\mu$, the problem has at least two positive weak solutions.
Databáze: Katalog Knihovny AV ČR