Finite element analysis for a regularized variational inequality of the second kind.
Autor: | Zhang, Tie |
---|---|
Další autoři: |
Zhang, S. (Shuhua)
Azari, H. (Hossein)
|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: In this paper, we investigate the a priori and the a posteriori error analysis for the nite element approximation to a regularization version of the variational inequality of the second kind. We prove the abstract optimal error estimates in the H1- and L2-norms, respectively, and also derive the optimal order error estimate in the L∞- norm under the strongly regular triangulation condition. Moreover, some residual{ based a posteriori error estimators are established, which can provide the global upper bounds on the errors. These a posteriori error results can be applied to develop the adaptive nite element methods. Finally, we supply some numerical experiments to validate the theoretical results. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |