Autor: |
Sheetal1 (AUTHOR), Pal, Jitender1 (AUTHOR) j_pal2k1@yahoo.com |
Předmět: |
|
Zdroj: |
Environmental Monitoring & Assessment. Jun2024, Vol. 196 Issue 6, p1-18. 18p. |
Abstrakt: |
Heavy metals significantly impact the environment due to their non-biodegradable, toxic, and carcinogenic behaviors. Lead contaminants impose severe health impacts on humans and the water environment. Therefore, eco-friendly and efficient lead ion removal practices such as nanotechnology are an urgent requirement for the abatement of lead pollution. In the present study, nanocellulose was synthesized from the cotton straw residue using chemical methods and modified with titanium dioxide to form a nanocomposite. The nanocomposite synthesized was characterized by using FTIR, XRD, FESEM, and BET. FTIR results noticed peaks at 1648.43 and 1443.57 cm−1 for cellulose and Ti–O-Ti bonding at 505.02 cm−1. The nanocomposite was noticed to be disordered and irregular in shape. The nanocomposite has particle sizes of 83 nm. The nanocomposite crystalline particle had 65% anatase and 32% rutile phases observed from the XRD result. BET results show that the surface area of nanocellulose increases after surface modification from 25.692 to 42.510 m2/g. The adsorption capacity of the nanocomposite was 0.552 mg/g was noticed. The Elovich kinetic and Baudu isotherms are the best-fitted models for lead ion adsorption. Thermodynamic parameters resulted in Gibbs free energy decreasing with temperature. This study revealed that modified cellulosic adsorbents efficiently absorbed lead ions derived from cotton straws. [ABSTRACT FROM AUTHOR] |
Databáze: |
GreenFILE |
Externí odkaz: |
|