Lipid peroxidation and antioxidant responses of Microcoleus vaginatus with the aid of attapulgite-based nanocomposite to wind stress.

Autor: Lv, Ying1 (AUTHOR), Feng, Yonglin2 (AUTHOR), Lv, Chen3 (AUTHOR), Liu, Xuelu1 (AUTHOR) liuxuelu2020@163.com
Předmět:
Zdroj: Environmental Technology. Jan2024, Vol. 45 Issue 1, p99-107. 9p.
Abstrakt: Wind erosion is one of the reasons for the formation of desertification in arid and semiarid areas. Many measures are used to achieve sustainable land management. Microcoleus vaginatus can influence and offer limited protection to soils from wind erosion through its impact on controlling threshold friction velocity. Therefore, the study aims to explore the effectiveness and anti-wind erosion ability of Microcoleus vaginatus with the aid of attapulgite-based nanocomposite and to find a method that can act as bioindicators for investigating wind erosion in arid and semiarid areas in the future, for offering a method to prevent desertification and provide a valuable measure for the sustainable development of the environment. In this study, the effects of wind stress on reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione (GSH) and the surface character of the soil were analysed. The results showed that increased ROS and MDA, decreased GSH, changed SOD, POD and CAT, and enhanced soil structure in Microcoleus vaginatus with the aid of attapulgite-based nanocomposites were influenced by 3 and 5 m·s−1 wind erosion. Further analysis demonstrated that increased SOD, POD and CAT and decreased GSH eliminated ROS and MDA through the antioxidant defense response of Microcoleus vaginatus with the aid of attapulgite-based nanocomposites. The results revealed that Microcoleus vaginatus with the aid of attapulgite-based nanocomposite had an important physiological adaptation for the elimination of ROS and lipid peroxidation induced by wind stress and could play a role in alleviating wind erosion. [ABSTRACT FROM AUTHOR]
Databáze: GreenFILE