Black blooms-induced adaptive responses of sulfate reduction bacteria in a shallow freshwater lake.

Autor: Chen, Mo1,2,3 (AUTHOR) 20170116@hubu.edu.cn, Zhang, Ya-Qing1 (AUTHOR), Krumholz, Lee R.4 (AUTHOR), Zhao, Li-Ya1,3 (AUTHOR), Yan, Zai-Sheng2 (AUTHOR), Yang, Yu-Jing1,3 (AUTHOR), Li, Zhao-Hua1,3 (AUTHOR), Hayat, Faisal1 (AUTHOR), Chen, Hong-Bing1,3 (AUTHOR), Huang, Ran1 (AUTHOR)
Předmět:
Zdroj: Environmental Research. Jun2022, Vol. 209, pN.PAG-N.PAG. 1p.
Abstrakt: Decomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms. Sulfate reduction rates (SRRs) in the water column were determined from the linear regression of sulfate depletion with time. Quantitative real-time polymerase chain reactions (qPCRs), targeting the dsrA gene and Illumina sequencing of 16S rDNA, were used to estimate the SRB population and SRB community structures, respectively. Our data indicate that although a higher abundance of SRB was responsible for the higher SRR in the bottom water (34.09 ± 2.37 nmol mL−1 day−1) than in the surface water (14.57 ± 2.91 nmol mL−1 day−1) during black blooms, cell-specific sulfate reduction rates (csSRRs) in the distinct water layers were not significantly different (P = 0.95), with the value of approximately 0.017 fmol cell−1 day−1. Additionally, Desulfomicrobium and Desulfovibrio were the two main genera of SRB in the water column during black bloom season, while Desulfobulbus , Desulfobacca and Desulfatiglans genera were identified in the sediments of both the black and non-black blooms in genera pools. Each SRB genus preferentially associated with bacteria for specific functions in the bacterial co-occurrence network, regardless of whether black booms occurred or not. These results extend our knowledge on the importance of SRB during black blooms and the adaptation of SRB to environmental changes in freshwater lakes. • Black bloom effects analyzed based on activities of sulfate-reducing bacteria. • Population of sulfate-reducing bacteria determined sulfate reduction rates. • Surface water acted as the main source of dissolved sulfide during black blooms. • Black blooms changed neighboring nodes for sulfate-reducing bacteria in the network. • Different sulfate-reducing bacteria associated with different functional bacteria. [ABSTRACT FROM AUTHOR]
Databáze: GreenFILE