Abstrakt: |
The Ogcheon fold belt and the Ryeongnam massif in the Korean Peninsula are made up of Precambrian igneous and sedimentary rocks that have been metamorphosed, tectonically deformed and extensively intruded by mafic to felsic plutonic rocks of Permian to Jurassic age. In the present study, we report seven new U–Pb zircon ages and Sr-Nd-Pb isotopic data for Permian to Jurassic plutons in the Ogcheon belt and the Ryeongnam massif. In the Ogcheon belt, these are: the Cheongsan porphyritic granite (217 ± 3.1 My), the Baegrog foliated granodiorite (206.4 ± 3.6 My), the Sani granite (178.8 ± 2.9 My) and the Yeonggwang foliated granite (173.0 ± 1.7 My). For the Ryeongnam massif, we report on the Yeongdeog foliated granodiorite (252.2 ± 2.9 My), the Sancheong gabbro (203.8 ± 3.3 My) and the Baegseogri foliated granodiorite (177.8 ± 2.4 My). All of these ages are lower concordia intercepts; the upper concordia intercepts indicate derivation from a Precambrian protolith. Sr, Nd and Pb isotopes also reveal that much of the Permian–Jurassic (252–173 Ma) plutonism in Korea was generated by recycling of Precambrian rocks. These new ages, together with other published zircon ages indicate that the plutonism in the Ogcheon fold belt is coeval with that in the Ryeongnam massif, but based on the Sr-Nd-Pb isotopic evidence, they are not cogenetic. In addition, zircon ages provide information on the movement along the Honam shear zone, which cuts across the whole Korean Peninsula and along most of its length provides the boundary between the Ogcheon fold belt and the Ryeongnam massif. It has a prolonged history of movement and deformation and appears to have been active from the Precambrian through to the Mesozoic, from before 1924 Ma to at least 180 Ma. The Permian–Jurassic igneous and tectonic activity in Korea is a manifestation of the more extensive orogenic activities that affected the East Asian continent at that time. In China, ultra high-pressure rocks of the Qinling–Dabie belt formed between 210 and 230 Ma as result of the collision between the South China block and the North China block. In central Japan, corresponding plutonic activity is dated as 175 to 231 Ma. The absence of ultra high-pressure rocks in Korea and Japan precludes a simple extension of the Qinling–Dabie belt eastwards; however, the effects of the continental collision eastwards are apparent from the igneous and tectonic activity. [ABSTRACT FROM AUTHOR] |