Analyse spectrale et calcul numérique pour l'équation de Boltzmann
Autor: | Jrad, Ibrahim |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Dans cette thèse, nous étudions les solutions de l'équation de Boltzmann. Nous nous intéressons au cadre homogène en espace où la solution f(t; x; v) dépend uniquement du temps t et de la vitesse v. Nous considérons des sections efficaces singulières (cas dit non cutoff) dans le cas Maxwellien. Pour l'étude du problème de Cauchy, nous considérons une fluctuation de la solution autour de la distribution Maxwellienne puis une décomposition de cette fluctuation dans la base spectrale associée à l'oscillateur harmonique quantique. Dans un premier temps, nous résolvons numériquement les solutions en utilisant des méthodes de calcul symbolique et la décomposition spectrale des fonctions de Hermite. Nous considérons des conditions initiales régulières et des conditions initiales de type distribution. Ensuite, nous prouvons qu'il n'y a plus de solution globale en temps pour une condition initiale grande et qui change de signe (ce qui ne contredit pas l'existence globale d'une solution faible pour une condition initiale positive - voir par exemple Villani Arch. Rational Mech. Anal 1998). In this thesis, we study the solutions of the Boltzmann equation. We are interested in the homogeneous framework in which the solution f(t; x; v) depends only on the time t and the velocity v. We consider singular crosssections (non cuto_ case) in the Maxwellian case. For the study of the Cauchy problem, we consider a uctuation of the solution around the Maxwellian distribution then a decomposition of this uctuation in the spectral base associated to the quantum harmonic oscillator At first, we solve numerically the solutions using symbolic computation methods and spectral decomposition of Hermite functions. We consider regular initial data and initial conditions of distribution type. Next, we prove that there is no longer a global solution in time for a large initial condition that changes sign (which does not contradict the global existence of a weak solution for a positive initial condition - see for example Villani Arch. Rational Mech. Anal 1998). |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |