Le rôle des bactéries dans le filtrage du chlorométhane un gaz destructeur de la couche d'ozone : des souches modèles aux communautés microbiennes de sols forestiers

Autor: Chaignaud, Pauline
Jazyk: English<br />French
Rok vydání: 2016
Předmět:
Druh dokumentu: Text
Popis: Le chlorométhane (CH3Cl) est un composé organique volatile responsable de plus de 15 % de la dégradation de l’ozone stratosphérique due aux composés chlorés. Il est produit majoritairement par les plantes vivantes ou en décomposition. Les bactéries capables d’utiliser le CH3Cl comme source de carbone pour leur croissance peuvent jouer un rôle de filtre dans les émissions de CH3Cl vers l'atmosphère. Ce processus biologique reste à quantifier dans l'environnement, notamment pour les sols forestiers considérés comme un puits majeur de ce composé.Dans les études environnementales, le gène cmu A est utilisé comme biomarqueur de la dégradation bactérienne du CH3Cl. Il code une chlorométhane méthyltransférase essentielle à la croissance bactérienne avec le CH3Cl parla voie cmu (pour chloromethane utilisation), la seule caractérisée à ce jour. Mon projet de thèse avait un double objectif : i) l’approfondissement des connaissances de l’adaptation au CH3Cl chez une bactérie méthylotrophe modèle, Methylobacterium extorquens CM4; ii) l’exploration de la diversité des bactéries CH3Cl-dégradantes de sols forestiers. L’étude RNAseq chez la souche CM4 a montré que la croissance avec le CH3Cl s'accompagne de différences dans la transcription de 137 gènes de son génome (6.2 Mb) par rapport à sa croissance sur le méthanol (CH3OH). Les gènes de la voie cmu, ainsi que d’autres gènes impliqués dans le métabolisme de cofacteurs essentiels à l’utilisation du CH3Cl par cette voie et eux aussi portés par le plasmide pCMU01 de la souche, en font partie. Les paralogues de ces gènes localisés sur le chromosome ne sont quant à eux pas différentiellement exprimés. En revanche, d’autres gènes du chromosome, potentiellement impliqués dans l’excrétion de protons produits lors de la déshalogénation (hppA), la régénération du NADP+ (pnt), ou le métabolisme du cofacteur tétrahydrofolate(gènes gcvPHT), le sont. L’étude de la diversité des bactéries CH3Cl-dégradantes de sol forestier de la réserve naturelle de Steigerwald (Allemagne) a été réalisée sur des microcosmes par une approche de « Stable Isotope Probing ». Les microorganismes capables d’assimiler le CH3Cl marqué au [13C] incorporent cet isotope lourd du carbone dans leur ADN. L'analyse des séquences amplifiées par PCR des gènes codant l’ARN 16S des fractions d'ADN enrichies en [13C] a permis de mettre en évidence de nouveaux phylotypes, du genre Methylovirgula et de l’ordre des Actinomycetales, distincts de ceux auxquelles les souches dégradant le CH3Cl isolées jusqu'ici sont affiliées. En revanche, les séquences du gène cmuA et d’autres gènes du métabolisme méthylotrophe obtenues par PCR à partir de l'ADN enrichi en [13C] sont très proches de celles des souches CH3Cl-dégradantes connues. Les résultats obtenus suggèrent ainsi que des bactéries ayant acquis par transfert horizontal les gènes de dégradation de la voie cmu ou ne possédant pas de gène cmuA contribuent au filtrage biologique du CH3Cl des sols forestiers. A l'avenir, le couplage de différentes méthodes moléculaires et des approches culturales visera à découvrir de nouvelles voies microbiennes de l’utilisation du CH3Cl, et à caractériser l’abondance et la diversité des métabolismes impliqués dans la dégradation du CH3Cl dans les sols et d'autres compartiments environnementaux.
Chloromethane (CH3Cl) is a volatile organic compound responsible for over 15% of stratospheric ozone degradation due to chlorinated compounds. It is mainly produced by living and decaying plants. Bacteria utilizing CH3Cl as sole carbon and energy source for growth were shown to be involved in the filtering of CH3Cl emissions to the atmosphere. This biological process remains to be quantified in the environment, especially for forest soil, a major CH3Cl sink. The cmuA gene is used as a biomarker of bacterial CH3Cl degradation in environmental studies. It encodes a CH3Cl methyltransferase essential for bacterial growth by the cmu (chloromethane utilization) pathway for growth with CH3Cl and the only one characterized so far. My thesis project had a double aim: i) In depth studies of CH3Cl adaptation of a model methylotrophic bacterium, Methylobacterium extorquens strain CM4; ii) Exploration of bacterial CH3Cl-utilizers in forest. An RNAseq study of strain CM4 has shown that growth with CH3Cl leads to a difference of transcription of 137 genes in its 6.2 Mb genome compared to growth with methanol (CH3OH). Among those, genes of the cmu pathway and other genes involved in the metabolism of essential cofactors for CH3Cl utilization by this pathway, are all plasmid pCMU01-encoded. Paralogous genes located on the chromosome were not differentially expressed. On the other hand, other chromosomal genes potentially involved in extruding protons generated during CH3Cl deshalogenation (hppA), NADP+ regeneration (pnt), or in the cofactor tetrahydrofolate metabolism (gcvPHT) were differentially expressed. The diversity of CH3Cl-degrading bacteria in forest soil of the German natural park of Steigerwald was studied in microcosms using stable isotope probing. Microorganisms able to assimilate labeled [13C]- CH3Cl incorporate this heavy carbon isotope in their DNA. Sequence analysis of the PCR-amplified 16S RNA encoding gene from [13C]-DNA fractions uncovered phylotypes of the genus Methylovirgula and of the order of the Actinomycetales, which were not associated with bacterial CH3Cl degradation so far. In contrast, PCR-amplified sequences of cmuA and other genes of methylotrophic metabolism were closely related to known CH3Cl-degrading isolates. These results suggest that bacteria containing genes of the cmu pathway acquired by horizontal gene transfer as well as bacteria lacking the cmu pathway contribute to biological filtering of CH3Cl in forest soil. Future experiments coupling molecular and culture methods will aim to discover new CH3Cl-degrading pathways and to characterize the abundance and diversity of CH3Cl-degradation metabolism in soil and other environmental compartments.
Databáze: Networked Digital Library of Theses & Dissertations