Etude des mécanismes d'insertion/désinsertion des cations alcalins (Li+/Na+) au sein de la structure olivine FePO4 pour accumulateurs Li-ion et Na-ion
Autor: | Lachal, Marie |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2015 |
Předmět: |
Synthèses hydrothermale et par précipitation
Diffraction des rayons X Microsonde nucléaire Microscopie électronique haute résolution Caractérisations électrochimiques Solution solide Hydrothermal and precipitation synthesis X ray diffraction Nuclear microprobe High resolution electronic microscopy Electrochemical characterizations Solid solution 620 |
Druh dokumentu: | Text |
Popis: | Dans le cadre du développement des technologies Na-ion, le composé NaFePO4, équivalent chimiquedu matériau très attractif LiFePO4, représente une alternative intéressante aux problèmes deressourcement du lithium. Toutefois, les composés LiFePO4 et NaFePO4 de structure olivineprésentent des divergences de comportement structural et électrochimique lors de l'insertioncationique. Ce travail présente une analyse des mécanismes de (dés)insertion des ions Li+ et Na+ ausein de la phase FePO4 par voie chimique et électrochimique. Les échantillons de LiFePO4 ont étésynthétisés par deux méthodes différentes (hydrothermale et précipitation), puis délithiéschimiquement via différents procédés. Dans un premier temps, les analyses structurales (DRX)associées aux analyses nucléaires ont permis d'effectuer un suivi de la cinétique de réaction. Nousavons montré que la présence de joints de grains, issus du traitement thermique effectué, limitefortement la vitesse de délithiation. L'analyse de l’évolution des domaines de cohérences a permis deproposer un mécanisme de délithiation original de type "Coeur-Coquille" avec un coeur de LiFePO4,confirmé par HRTEM et STEM-EELS. Dans un deuxième temps, afin de comparer les mécanismes dedélithiation chimique et électrochimique, l’insertion et la cyclabilité des ions Li+ et Na+ ont étécaractérisées en demi-cellules lithium et sodium. Bien que la signature électrochimique des matériauxLiFePO4 et NaFePO4 soit différente, les performances en termes de capacité restituée ou de tenue enpuissance s'avèrent similaires. Enfin, l'insertion électrochimique des ions Li+ et Na+ au sein d'unepoudre comportant des défauts structuraux a été caractérisée par DRX Operando durant un cycle decharge / décharge effectué à régime lent. Ces analyses ont révélées que la co-insertion cationiques'effectue via une solution solide de type LixNayFePO4 (0 As part of the development of Na-ion technology, NaFePO4 compound, chemical equivalent of theattractive LiFePO4 material, would be a promising option facing possible lithium shortage. However,olivine-type LiFePO4 and NaFePO4 display different structural and electrochemical behaviors duringcationic insertion. This thesis presents an analysis of the (de)insertion mechanisms of Li+ and Na+ ionswithin olivine-type FePO4 by chemical and electrochemical means. Samples of LiFePO4 weresynthesized by two different methods (hydrothermal and precipitation), then chemically delithiated bydifferent processes. In a first step, structural analysis (XRD) associated with nuclear analyses enabledfollowing the reaction kinetics. We have pointed out that the presence of grain boundaries, resultingfrom the heat treatment, strongly limits the delithiation kinetics. The analysis of the evolution of thecoherency domains enabled us to propose an original "Shrinking Core" type delithiation mechanismwith a core of LiFePO4, observed by HRTEM and STEM-EELS. In a second step, in order to comparechemical and electrochemical mechanisms, insertion and cyclability of Li+ and Na+ were characterizedin lithium and sodium half-cells. Although the electrochemical signature of LiFePO4 and NaFePO4materials is different, the performances in terms of restored capacity or power capability are similar.Finally, electrochemical insertion of Li+ and Na+ in a powder comprising structural defects wascharacterized by operando XRD, during a charge / discharge cycle performed at low rate. Theseanalyses revealed that the cationic co-insertion takes place via a solid solution LixNayFePO4(0 |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |