FAST high-temperature consolidation of Oxide-Dispersion Strengthened (ODS) steels : Process, microstructure, precipitation, properties

Autor: Boulnat, Xavier
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Druh dokumentu: Text
Popis: Ce travail vise à améliorer la compréhension de la microstructure d’aciers ferritiques appelés aciers ODS. Ils sont fabriqués par métallurgie des poudres, ce qui inclut le cobroyage d’une poudre ferritique avec une fine poudre d’oxydes, suivi d'une consolidation à haute température. La consolidation permet de former un matériau dense renforcé par des particules nanométriques qui sont responsables des bonnes propriétés mécaniques à haute température. Cependant, les procédés conventionnels, notamment la Compaction Isostatique à Chaud, provoquent des microstructures hétérogènes qui étaient jusqu’à ce jour mal comprises. Ainsi, la technique rapide de consolidation assistée par courant électrique appelée "Spark Plasma Sintering" (SPS), a été testée afin d’étudier la microstructure. Pour la première fois, on montre que d’excellentes propriétés mécaniques peuvent être obtenues par SPS, comparables à celles des matériaux ODS obtenus classiquement par Compaction Isostatique à Chaud, mais avec un temps de procédé largement réduit. Cependant, la consolidation par SPS échoue quand il s’agit d’obtenir une micro-structure ferritique homogène. En effet, malgré la cinétique rapide de consolidation, on obtient des grains dits ultrafins (D < 500 nm) entourée de grains plus grossiers (D >10 μm). Une caractérisation microstructurale poussée a permis de comprendre l’évolution du matériau durant la consolidation. Un modèle d’évolution microstructurale a été proposé. Le calcul des pressions gouvernant la mobilité des interfaces souligne l’importance de la déformation plastique hétérogène issue du cobroyage des poudres. Par ailleurs, il est montré que la précipitation des particules d’oxydes ancre les joints de grains et stabilise la microstructure hétérogène, même à très haute température. On montre aussi qu’augmenter la teneur en renforts n’empêche pas la croissance anormale mais permet de contrôler la fraction et la taille de grains ultrafins, et donc les propriétés mécaniques des ODS. Parce que les particules jouent un rôle primordial dans la croissance des grains, une caractérisation fine de l’état de précipitation a été réalisée sur les matériaux consolidés par SPS. L’étude par Microscopie Electronique en Transmission, Diffusion des Neutrons et Sonde Atomique révèle une grande densité d’oxydes qui varient en taille et en composition chimique. Un modèle thermodynamique de type germination/croissance/coalescence a été développé pour simuler les cinétiques de précipitation des phases Y2O3 et Y2Ti2O7 durant les étapes de consolidation non isothermes. Tant les résultats expérimentaux que numériques démontrent la précipitation rapide des nano-particules qui sont ensuite extrêmement stables durant les recuits. Ce modèle permet de mieux comprendre la spécificité des microstructures et de la précipitation dans les ODS, de la formation rapide de particules nanométriques à la précipitation grossière d’oxydes de titane aux interfaces.
This work aims to lighten the understanding of the behavior of a class of metallic materials called Oxide-Dispersion Strengthened (ODS) ferritic steels. ODS steels are produced by powder metallurgy with various steps including atomization, mechanical alloying and high-temperature consolidation. The consolidation involves the formation of nanoparticles in the steel and various evolutions of the microstructure of the material that are not fully understood. In this thesis, a novel consolidation technique assisted by electric field called "Spark Plasma Sintering" (SPS) or "Field-Assisted Sintering Technique" (FAST) was assessed. Excellent mechanical properties were obtained by SPS, comparable to those of conventional hot isostatic pressed (HIP) materials but with much shorter processing time. Also, a broad range of microstructures and thus of tensile strength and ductility were obtained by performing SPS on either milled or atomized powder at different temperatures. However, SPS consolidation failed to avoid heterogeneous microstructure composed of ultrafine-grained regions surrounded by micronic grains despite of the rapid consolidation kinetics. A multiscale characterization allowed to understand and model the evolution of this complex microstructure. An analytical evaluation of the contributing mechanisms can explain the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is argued to be the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Even if increasing the solute content of yttrium, titanium and oxygen does not impede abnormal growth, it permits to control the fraction and the size of the retained ultrafine grains, which is a key-factor to tailor the mechanical properties. Since precipitation through grain boundary pinning plays a significant role on grain growth, a careful characterization of the precipitation state was performed on consolidated ODS steels. The experimental data obtained by transmission electron microscopy, small angle neutron scattering and atom-probe tomography evidenced the presence of dense and nanosized particles in SPS ODS steels, similarly to what is observed in conventional ODS steels. This is of great importance since it proves that the precipitation is very rapid and mainly occurs during the heating stage of the consolidation process. Using a thermodynamic model, the precipitation kinetics of Y2O3 and Y2Ti2O7 were successfully reproduced at various consolidation temperatures. Both experimental and numerical findings agree with the rapid precipitation of nanoparticles that are then extremely stable, even at high temperature. Consequently, this model can be an efficient tool to design ODS steelsby the optimization of the precipitation state.
Databáze: Networked Digital Library of Theses & Dissertations