Robust Preconditioners Based on the Finite Element Framework

Autor: Bängtsson, Erik
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Druh dokumentu: Doctoral Thesis<br />Text
Popis: Robust preconditioners on block-triangular and block-factorized form for three types of linear systems of two-by-two block form are studied in this thesis. The first type of linear systems, which are dense, arise from a boundary element type of discretization of crack propagation problems. Numerical experiment show that simple algebraic preconditioning strategies results in iterative schemes that are highly competitive with a direct solution method. The second type of algebraic systems, which are sparse, indefinite and nonsymmetric, arise from a finite element (FE) discretization of the partial differential equations (PDE) that describe (visco)elastic glacial isostatic adjustment (GIA). The Schur complement approximation in the block preconditioners is constructed by assembly of local, exactly computed Schur matrices. The quality of the approximation is verified in numerical experiments. When the block preconditioners for the indefinite problem are combined with an inner iterative scheme preconditioned by a (nearly) optimal multilevel preconditioner, the resulting preconditioner is (nearly) optimal and robust with respect to problem size, material parameters, number of space dimensions, and coefficient jumps. Two approaches to mathematically formulate the PDEs for GIA are compared. In the first approach the equations are formulated in their full complexity, whereas in the second their formulation is confined to the features and restrictions of the employed FE package. Different solution methods for the algebraic problem are used in the two approaches. Analysis and numerical experiments reveal that the first strategy is more accurate and efficient than the latter. The block structure in the third type of algebraic systems is due to a fine-coarse splitting of the unknowns. The inverse of the pivot block is approximated by a sparse matrix which is assembled from local, exactly inverted matrices. Numerical experiments and analysis of the approximation show that it is robust with respect to problem size and coefficient jumps.
Databáze: Networked Digital Library of Theses & Dissertations