Combining nonthermal plasma with Mn-based catalyst for higher SCR activity
Autor: | Jun-Xiang Chen, 陳俊翔 |
---|---|
Rok vydání: | 2017 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 105 Nitrogen oxides (NOx) has been regarded as one of the most serious air pollutants. It not only causes adverse environmental effects such as acid rain, photochemical smog, deterioration of visibility and water quality, but also harms human respiratory system. Among de-NOx technologies, selective catalytic reduction (SCR) is considered as the best control technology for NOx removal. However, SCR typically needs to be operated at a temperature window ranging from 250 to 400oC. If the system is operated at lower temperatures, NOx could not be reduced effectively. The aim of this study is to develop a low-temperature de-NOx technique via plasma catalysis and fast-SCR for effective NO reduction. This study could be divided into 2 aspects: (1) Mn-catalysts modified (including 10 wt.% MnCe/TiO2, 10 wt.% MnCeNi/TiO2 and 10 wt.% MnCeCu/TiO2) for de-NOx, (2) combining plasma catalysis and fest-SCR for de-NOx. Experimental results indicate that NO conversion achieved with 10 wt.% MnCeNi/TiO2 reaches 100% at 150oC, while 10 wt.% MnCe/TiO2 and 10 wt.% MnCeCu/TiO2 need to be operated at ≥200oC for complete conversion. MnCeNi/TiO2 is further applied for plasma catalysis system due to its higher activities. Results indicate that 300 ppm NO could be converted into 165 ppm NO and 153 ppm NO2 with the applied voltage of 15.5 kV and frequency of 10 kHz and 100% NO conversion is achieved at 100oC by fast-SCR. Moreover, NO conversion still maintains 90% at 100oC with plasma catalysis system as CO, CO2, C2H4, SO2 and H2O(g) are introduced into the stream gas simultaneously. Overall, this study demonstrates that combining nonthermal plasma with Mn-based catalyst is effective in reducing NOx emission at a low temperature and has good potential for industrial application. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |