Coffee shop location analysis using GIS and data mining techniques

Autor: Liu, Yi Hung, 劉奕宏
Rok vydání: 2011
Druh dokumentu: 學位論文 ; thesis
Popis: 100
The number of customers of coffee shop chains has grown steadily in recent years that cause the market size as well as the total consumption value increase rapidly and continuously. The competition among the chain coffee stores get even worse under the traditional profit oriented management style. In such case, it is crucial to make the correct decisions when selecting the coffee shop locations as well as making operation strategies in opening new coffee shops. Traditionally, it takes a great amount of time and human resources in collecting relevant information, conducting field visits as well as site evaluations when making coffee shop site selections. One seldom considers complex factors of site evaluation or field analyzing in selecting the location of new coffee shop. Hence, it will be one of the major contributions if one can find a mechanism in analyzing the site selection as well as profit evaluation to help the investors to produce better profit and to improve the chance of success. The goal of this thesis is to provide recommendations to improve the success rate of chain coffee shop site selection strategy. Based on the coffee market leaders’ success experiences in formulating the site selection strategies, we analyzed the correlation coefficients of the population as well as economy activities in order to identify the key factors in successful site selection strategies. We also used data mining techniques to construct the classification models of successful site selection. In addition, we analyzed and evaluated competition relations between the two leading chain coffee brands using the geographic information systems to obtain appropriate recommendations in new site selections. The shop rental information of Taipei City was used to explore and to evaluate the models recommended in our mechanism. The experimental results showed that the prediction through the classification models for site selections can achieve 70% of success rate. This indicates our mechanism effectively improve the successful rate of site selections. Moreover, the experimental results also show that the spatial analysis of site selections between the competitors is helpful in providing appropriate site selection strategies.
Databáze: Networked Digital Library of Theses & Dissertations