AVALIAÇÃO E SELEÇÃO DE VARIÁVEIS PREDITORAS NA ESTIMATIVA DA DENSIDADE DA MADEIRA DE EUCALIPTO
Autor: | LOPES, I. L. E. |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Repositório Institucional da UFESUniversidade Federal do Espírito SantoUFES. |
Druh dokumentu: | masterThesis |
Popis: | Made available in DSpace on 2018-08-01T22:56:05Z (GMT). No. of bitstreams: 1 tese_11767_Dissertação ISÁIRA 2017-Final.pdf: 2017494 bytes, checksum: 0a2d580e3699d6daa314f3acde92da7a (MD5) Previous issue date: 2018-02-28 Este trabalho teve como objetivo avaliar e selecionar as variáveis preditoras mais relevantes para estimação da densidade básica da madeira de árvores de eucalipto. Foram avaliadas as variáveis qualitativas obtidas em informações cadastrais (clone, sub-região e relevo), quantitativas obtidas de Inventário Florestal Contínuo IFC (volume total com casca, diâmetro a altura do peito e altura total) e quantitativas referentes às informações climáticas da área em estudo (velocidade do vento, temperatura média, precipitação total média, déficit de pressão de vapor, déficit hídrico e altitude), para a estimação da densidade da madeira de 386 árvores. Os métodos de avaliação e seleção de variáveis utilizados foram: força bruta com aplicação de Redes Neurais Artificiais (RNA) testando todas as possíveis combinações entre as variáveis; algoritmo de Garson e Random Forest, que quantificam a importância individual das variáveis preditoras. A classificação das variáveis preditoras variou entre os métodos, o que pode ser atribuído às suas diferentes abordagens matemáticas. A variável clone destacou-se das demais, em todos os métodos. Para o método da força bruta, a simplificação da RNA com o uso de 5 variáveis resultou em maior grau de exatidão das estimativas de densidade básica, em que a combinação ótima consistiu nas variáveis clone, idade, volume total com casca, temperatura média e déficit hídrico. Quanto ao algoritmo de Garson, as 5 variáveis com maior valor de importância foram: clone, sub-região, relevo, idade e déficit hídrico. Já o Random Forest, apresentou dentre as 5 variáveis com maior importância, o clone, idade, altura total, precipitação total média e temperatura média. Entretanto, diante do esforço computacional para aplicação do método da força bruta, uma alternativa é o uso do Random forest ou algoritmo de Garson, visto que as variáveis selecionadas nestes métodos também proporcionaram boas estimativas de densidade básica da madeira. Palavras-chave: Random forest, algoritmo de Garson, Redes Neurais Artificiais, madeira, mensuração florestal. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |