Outils pour la détection et la classificationApplication au diagnostic de défauts de surface de rail

Autor: Bentoumi, Mohamed
Jazyk: francouzština
Rok vydání: 2004
Předmět:
Druh dokumentu: Diplomová práce
Popis: Le travail présenté dans ce mémoire aborde les problématiques de détection et de classification pour le diagnostic de défauts. Deux approches différentes sont abordées. La première approche est l'approche de détection et classification simultanées où le problème global à K classes est scindé en sous-problèmes. Chaque sous-problème a en charge la détection d'une ou plusieurs classes de défauts et il est traité par une cellule qui enchaîne les phases de prétraitement des signaux, de choix de l'espace de représentation, de détection, puis de décision. La résolution complète du problème à K classes s'effectue par un agencement séquentiel des cellules selon un arbre de décision hiérarchique ou par une mise en parallèle des cellules avec règles de décision associées.La seconde approche est l'approche de détection et classification successives. Elle consiste à traiter toutd'abord les signaux issus du capteur de manière simple pour la délivrance d'un signal d'alarme indiquant laprésence possible d'un défaut. Dans ce cas, et dans ce cas seulement, des traitements haut niveau sont mis enoeuvre dans le but d'analyser plus finement les signatures de ces défauts. Les outils pour la classification - les différents classifieurs linéaires, les classifieurs neuronaux et les machines à vecteurs de support - sont détaillés. L'accent est mis sur le réglage des marges des classifieurs linéaires, sur leurs capacités de généralisation et sur les estimateurs de cette capacité de généralisation.L'ensemble de ces méthodes a été validé sur une application concernant la détection de défauts de surface de rail dans un contexte métro. Un démonstrateur temps réel et opérant en condition d'exploitation a permis de tester les solutions de l'approche détection et classification simultanées, en considérant les taux de bonne détection et defausse alarme sur 4 classes de défauts de rail. La transformée en ondelettes, le filtrage inverse et la séparation de sources par analyse en composantes indépendantes sont les outils de prétraitement qui ont été particulièrement détaillés dans ce contexte applicatif.Une base de données, constituée à partir de mesures sur site labellisées, a permis de qualifier statistiquement les solutions de l'approche détection et classification successives. Une hiérarchisation des méthodes est proposée en fonction de leur capacité de généralisation, mais aussi de leur complexité et de leur aptitude à traiter le problème avec ou sans optimisation des espaces de représentation.
Databáze: Networked Digital Library of Theses & Dissertations