Pairwise likelihood estimation for confirmatory factor analysis models with categorical variables and data that are missing at random
Autor: | Katsikatsou, Myrsini, Moustaki, Irini, Jamil, Haziq |
---|---|
Rok vydání: | 2022 |
Předmět: |
Sozialwissenschaften
Soziologie Social sciences sociology anthropology PIAAC Erhebungstechniken und Analysetechniken der Sozialwissenschaften Methods and Techniques of Data Collection and Data Analysis Statistical Methods Computer Methods Wahrscheinlichkeit Daten Methodenvergleich Simultananalyse Einstellung probability data comparison of methods simultaneous analysis attitude |
Zdroj: | British Journal of Mathematical and Statistical Psychology, 75, 1, 23-45 |
Druh dokumentu: | Zeitschriftenartikel<br />journal article |
ISSN: | 2044-8317 |
DOI: | 10.1111/bmsp.12243 |
Popis: | Methods for the treatment of item non-response in attitudinal scales and in large-scale assessments under the pairwise likelihood (PL) estimation framework and under a missing at random (MAR) mechanism are proposed. Under a full information likelihood estimation framework and MAR, ignorability of the missing data mechanism does not lead to biased estimates. However, this is not the case for pseudo-likelihood approaches such as the PL. We develop and study the performance of three strategies for incorporating missing values into confirmatory factor analysis under the PL framework, the complete-pairs (CP), the available-cases (AC) and the doubly robust (DR) approaches. The CP and AC require only a model for the observed data and standard errors are easy to compute. Doubly-robust versions of the PL estimation require a predictive model for the missing responses given the observed ones and are computationally more demanding than the AC and CP. A simulation study is used to compare the proposed methods. The proposed methods are employed to analyze the UK data on numeracy and literacy collected as part of the OECD Survey of Adult Skills. |
Databáze: | SSOAR – Social Science Open Access Repository |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |