Autor: |
Hui Li, Rongrong Gong, Pengfei Hou, Libao Xing, Dongbao Jia, Haining Li |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 31, Iss 5, Pp 3030-3049 (2023) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2023153?viewType=HTML |
Popis: |
Due to the characteristics of online learning resource recommendation such as large scale, uneven quality and diversity of preferences, how to accurately obtain various personalized learning resource lists has become an urgent problem to be solved in the field of online learning resource recommendation. This paper proposes an online learning resource recommendation model based on the improved NSGA-Ⅱ algorithm, which integrates the Tabu search algorithm to improve the local search ability of NSGA-Ⅱ algorithm. It takes background fitness, cognitive fitness and diversity as the objective functions for optimization. The dynamic updating of crowding degree is used to avoid the risk that the individuals with low crowding degree in the same area are deleted at the same time. Meanwhile, an adaptive genetic algorithm is applied to assign the optimal crossover rate and the mutation rate according to individual adaptability level, which ensures the convergence of genetic algorithm and the diversity of population. The experimental results show that the proposed model is superior to the traditional recommendation algorithm in terms of accuracy index, mean fitness, recall rate, F1 mean, HV, GD and IGD, etc., thus verifying the feasibility and effectiveness of the algorithm. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|