On the Role of Diffusion Behaviors in Stability Criterion for p-Laplace Dynamical Equations with Infinite Delay and Partial Fuzzy Parameters under Dirichlet Boundary Value
Autor: | Ruofeng Rao, Zhilin Pu, Shouming Zhong, Jialin Huang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Journal of Applied Mathematics, Vol 2013 (2013) |
Druh dokumentu: | article |
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2013/940845 |
Popis: | By the way of Lyapunov-Krasovskii functional approach and some variational methods in the Sobolev space W01,p(Ω), a global asymptotical stability criterion for p-Laplace partial differential equations with partial fuzzy parameters is derived under Dirichlet boundary condition, which gives a positive answer to an open problem proposed in some related literatures. Different from many previous related literatures, the nonlinear p-Laplace diffusion item plays its role in the new criterion though the nonlinear p-Laplace presents great difficulties. Moreover, numerical examples illustrate that our new stability criterion can judge what the previous criteria cannot do. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |