Autor: |
Monica Anderson, Marika Diepenbroek, Lara Pudwell, Alex Stoll |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 19 no. 2, Permutation..., Iss Permutation Patterns (2018) |
Druh dokumentu: |
article |
ISSN: |
1365-8050 |
DOI: |
10.23638/DMTCS-19-2-14 |
Popis: |
In this paper, we consider pattern avoidance in a subset of words on $\{1,1,2,2,\dots,n,n\}$ called reverse double lists. In particular a reverse double list is a word formed by concatenating a permutation with its reversal. We enumerate reverse double lists avoiding any permutation pattern of length at most 4 and completely determine the corresponding Wilf classes. For permutation patterns $\rho$ of length 5 or more, we characterize when the number of $\rho$-avoiding reverse double lists on $n$ letters has polynomial growth. We also determine the number of $1\cdots k$-avoiders of maximum length for any positive integer $k$. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|