Autor: |
Balázs Zsirka, Orsolya Fónagy, Veronika Vágvölgyi, Tatjána Juzsakova, Lajos Fodor, Csilla Őze |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Crystals, Vol 14, Iss 9, p 793 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4352 |
DOI: |
10.3390/cryst14090793 |
Popis: |
Kaolin-based graphitic carbon nitride (g-CNx) composite photocatalysts were synthesized from a urea precursor using a commercial kaolin. Structural characterization by X-ray diffraction and infrared spectroscopy (FTIR) verified the successful thermal polycondensation of g-CNx along the thermal dehydroxylation of kaolinite to metakaolin at 550 °C. The g-CNx content of the composites were estimated by thermogravimetry and CHN analysis, ranging from ca. 87 m/m% to ca. 2 m/m% of dry mass. The addition of kaolin during the composite synthesis was found to have a significant effect: the yield of in situ formed g-CNx drastically decreased (from ca. 4.9 m/m% to 3.8–0.1 m/m%) with increasing kaolin content. CHN and FTIR indicated the presence of nitrogen-rich g-CNx, having a specific surface area of 50 m2/g, which synergistically increased after composite synthesis to 67–82 m2/g. Estimated optical band gaps indicated the affinity to absorb in the visible light spectrum (λ < 413 nm). Photocatalytic activity upon both UV and artificial sunlight irradiation was observed by hydroxyl radical evolution, however, without the synergistic effect expected from the favorable porosity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|