Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships

Autor: Chia-Yi Cheng, Ying Li, Kranthi Varala, Jessica Bubert, Ji Huang, Grace J. Kim, Justin Halim, Jennifer Arp, Hung-Jui S. Shih, Grace Levinson, Seo Hyun Park, Ha Young Cho, Stephen P. Moose, Gloria M. Coruzzi
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-25893-w
Popis: Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.
Databáze: Directory of Open Access Journals