Quadratic upwind differencing scheme in the finite volume method for solving the convection-diffusion equation
Autor: | Minilik Ayalew, Mulualem Aychluh, Daya Lal Suthar, Sunil Dutt Purohit |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematical and Computer Modelling of Dynamical Systems, Vol 29, Iss 1, Pp 265-285 (2023) |
Druh dokumentu: | article |
ISSN: | 13873954 1744-5051 1387-3954 |
DOI: | 10.1080/13873954.2023.2282974 |
Popis: | ABSTRACTDue to the high importance of the convection-diffusion equation, we aim to develop a quadratic upwind differencing scheme in the finite volume approach for solving this equation. Our newly developed numerical approach is conditionally stable. The strategy employs a quadratic upwind differencing scheme in the finite volume technique for spatial approximation with third-order accuracy. The temporal integration is approximated using the explicit theta method of first-order accuracy. Some numerical examples are given to support our theoretical procedures. The findings are plotted using MATLAB R2016a mathematical software. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |