Autor: |
Amirmasoud Amirkabiri, Dawn Idoko, Behzad Kordi, Greg E. Bridges |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 15, p 4928 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24154928 |
Popis: |
This paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric field within the sensor’s air cavity. The air cavity is loaded with varactor diodes whose reverse bias voltage is modified by the to-be-measured external electric field. Variation in the external electric field results in a variation of the sensor’s resonant frequency. The CLAF-SIW sensor offers a high unloaded quality factor, which is required for a long-distance ringback-based interrogation system. A prototype of the proposed sensor is fabricated and tested. It can measure a time-varying external electric field up to 6.9 kV/m, has a sensitivity of 1.86 (kHz)/(V/m), and can be interrogated from a distance of 80 cm. The feasible maximum bandwidth of the external electric field is 25 kHz. The proposed sensor offers a compact planar multilayer structure that can easily be incorporated with a planar antenna and its size can be reduced by selecting a higher operating frequency without an increase in dielectric loss. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|