Autor: |
WU Yalong, XIA Xiaobin, WANG Guanghong, XU Wenzhen, LI Zhefu, ZHANG Bintuan |
Jazyk: |
čínština |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
He jishu, Vol 46, Iss 5, Pp 050203-050203 (2023) |
Druh dokumentu: |
article |
ISSN: |
0253-3219 |
DOI: |
10.11889/j.0253-3219.2023.hjs.46.050203&lang=zh |
Popis: |
BackgroundThe SXFEL (Soft X-ray Free-Electron Laser facility) is the first X-ray coherent light source in China. To monitor the beam loss in its undulator beamline, a quartz fiber beam loss monitoring system based on the Cherenkov radiation principle was designed and installed. The quartz fiber is insensitive to high-energy gamma rays, making it suitable for a strong SXFEL radiation field environment.PurposeThis study aims to apply quartz fiber beam loss monitoring (BLM) system to the undulator beamline of SXFEL, and carry out position calibration experiment to measure the fiber attenuation coefficient, and performance of the system in the beam tuning period.MethodsFirst, two pure quartz composition fibers with 400 μm inner diameter of core and high concentration of hydroxide ions were employed. The beam loss signal was generated by falling YAG (Ce:Y3Al5O12, target film) of the beam profile monitor at a fixed position and adjusting the trigger time delay to make the position of the beam loss signal the same as that of the beam profile monitor for position calibration experiment. Second, to measure the fiber attenuation coefficient, the coefficient was fitted by bringing the peak value of the beam loss signal generated by the falling YAG at different positions of the SBP (Shanghai-XFEL Beamline Project) beamline and the corresponding fiber position into the signal attenuation formula.ResultsThe fiber BLM can accurately reflect the position of the beam loss with upstream position resolution of approximate 0.2 m in the experiment test, as well as in the period of beam tuning. The refractive index of quazrtz firber core is approximately 1.5, hence the relationship between the beam loss position and signal arrival to upstream PMT time interval is 0.12 m·ns-1. The measured fiber attenuation coefficient is around 74 dB·km-1, which is consistent with the calculation result and similar to the measurement result of SPring-8 Angstrom Compact Free Electron Laser (SACLA) using the same type of optical fiber.ConclusionsThe fiber beam loss monitoring system has a good position resolution and has the potential to meet the requirements of SXFEL beam tuning. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|