Numerical Quenching for Heat Equations with Coupled Nonlinear Boundary Flux

Autor: Kouame Beranger Edja, Koffi N'guessan, Brou Jean-Claude Koua, Kidjegbo Augustin Toure
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Analysis and Applications, Vol 17, Iss 6, Pp 1034-1051 (2019)
Druh dokumentu: article
ISSN: 2291-8639
Popis: In this paper, we study a numerical approximation of the following problem ut = uxx, vt = vxx, 0 < x < 1, 0 < t < T; ux(0, t) = u−m(0, t) + v−p(0, t), vx(0, t) = u−q (0, t) + v−n(0, t) and ux(1, t) = vx(1, t) = 0, 0 < t < T, where m, p, q and n are parameters. We prove that the solution of a semidiscrete form of above problem quenches in a finite time only at first node of the mesh. We show that the time derivative of the solution blows up at quenching node. Some conditions under which the non-simultaneous or simultaneous quenching occurs for the solution of the semidiscrete problem are obtained. We establish the convergence of the quenching time. Finally, some numerical results to illustrate our analysis are given.
Databáze: Directory of Open Access Journals