Popis: |
Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids ( $c_{pNF}$ ) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the $c_{pNF}$ based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the $c_{pNF}$ based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the $c_{pNF}$ . In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the $c_{pNF}$ based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the $c_{pNF}$ by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids. |