Predicting hosts based on early SARS-CoV-2 samples and analyzing the 2020 pandemic

Autor: Qian Guo, Mo Li, Chunhui Wang, Jinyuan Guo, Xiaoqing Jiang, Jie Tan, Shufang Wu, Peihong Wang, Tingting Xiao, Man Zhou, Zhencheng Fang, Yonghong Xiao, Huaiqiu Zhu
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-021-96903-6
Popis: Abstract The SARS-CoV-2 pandemic has raised concerns in the identification of the hosts of the virus since the early stages of the outbreak. To address this problem, we proposed a deep learning method, DeepHoF, based on extracting viral genomic features automatically, to predict the host likelihood scores on five host types, including plant, germ, invertebrate, non-human vertebrate and human, for novel viruses. DeepHoF made up for the lack of an accurate tool, reaching a satisfactory AUC of 0.975 in the five-classification, and could make a reliable prediction for the novel viruses without close neighbors in phylogeny. Additionally, to fill the gap in the efficient inference of host species for SARS-CoV-2 using existing tools, we conducted a deep analysis on the host likelihood profile calculated by DeepHoF. Using the isolates sequenced in the earliest stage of the COVID-19 pandemic, we inferred that minks, bats, dogs and cats were potential hosts of SARS-CoV-2, while minks might be one of the most noteworthy hosts. Several genes of SARS-CoV-2 demonstrated their significance in determining the host range. Furthermore, a large-scale genome analysis, based on DeepHoF’s computation for the later pandemic in 2020, disclosed the uniformity of host range among SARS-CoV-2 samples and the strong association of SARS-CoV-2 between humans and minks.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje