Autor: |
Mostafa Farouk Senussi, Hyun-Soo Kang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 20, p 9332 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14209332 |
Popis: |
Occlusion removal in light-field images remains a significant challenge, particularly when dealing with large occlusions. An architecture based on end-to-end learning is proposed to address this challenge that interactively combines CSPDarknet53 and the bidirectional feature pyramid network for efficient light-field occlusion removal. CSPDarknet53 acts as the backbone, providing robust and rich feature extraction across multiple scales, while the bidirectional feature pyramid network enhances comprehensive feature integration through an advanced multi-scale fusion mechanism. To preserve efficiency without sacrificing the quality of the extracted feature, our model uses separable convolutional blocks. A simple refinement module based on half-instance initialization blocks is integrated to explore the local details and global structures. The network’s multi-perspective approach guarantees almost total occlusion removal, enabling it to handle occlusions of varying sizes or complexity. Numerous experiments were run on sparse and dense datasets with varying degrees of occlusion severity in order to assess the performance. Significant advancements over the current cutting-edge techniques are shown in the findings for the sparse dataset, while competitive results are obtained for the dense dataset. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|