A Generalization of Lieb concavity theorem

Autor: Qiujin He, Chunxia Bu, Rongling Yang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 5, Pp 12305-12314 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024601?viewType=HTML
Popis: Lieb concavity theorem, successfully solved the Wigner-Yanase-Dyson conjecture, which is a very important theorem, and there are many proofs of it. Generalization of the Lieb concavity theorem has been obtained by Huang, which implies that it is jointly concave for any nonnegative matrix monotone function $ f(x) $ over $ \left(\operatorname{Tr}\left[\wedge^{k}(A^{\frac{qs}{2}}K^{\ast}B^{sp}KA^{\frac{sq}{2}})^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $. In this manuscript, we obtained $ \left(\operatorname{Tr}\left[\wedge^{k}(f(A^{\frac{qs}{2}})K^{\ast}f(B^{sp})Kf(A^{\frac{sq}{2}}))^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $ was jointly concave for any nonnegative matrix monotone function $ f(x) $ by using Epstein's theorem, and some more general results were obtained.
Databáze: Directory of Open Access Journals