Analysis of Ozone Formation Sensitivity in Chinese Representative Regions Using Satellite and Ground-Based Data

Autor: Yichen Li, Chao Yu, Jinhua Tao, Xiaoyan Lu, Liangfu Chen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 2, p 316 (2024)
Druh dokumentu: article
ISSN: 16020316
2072-4292
DOI: 10.3390/rs16020316
Popis: O3 poses a significant threat to human health and the ecological environment. In recent years, O3 pollution has become increasingly serious, making it difficult to accurately control O3 precursor emissions. Satellite indicator methods, such as the FNR (formaldehyde-to-nitrogen dioxide ratio (HCHO/NO2 ratio)), provide an effective way to identify ozone pollution control areas on a large geographical scale due to their simple acquisition of datasets. This can help determine the primary factors contributing to O3 pollution and assist in managing it. Based on TROPOMI data from May 2018 to December 2022, combined with ground-based monitoring data from the China National Environmental Monitoring Centre, we explored the uncertainty associated with using the HCHO/NO2 ratio (FNR) as an indicator in ozone control area determination. We focused on the four representative regions in China: Jing-Jin-Ji-Lu-Yu (JJJLY), Jiang-Zhe-Hu-Wan (JZHW), Chuan-Yu (CY), and South China. By using the statistical curve-fitting method, we found that the FNR thresholds were 3.5–5.1, 2.0–4.0, 2.5–4.2, and 1.7–3.5, respectively. Meanwhile, we analyzed the spatial and temporal characteristics of the HCHO, NO2, and O3 control areas. The HCHO concentrations and NO2 concentrations had obvious cyclical patterns, with higher HCHO column densities occurring in summer and higher NO2 concentrations in winter. These high values always appeared in areas with dense population activities and well-developed economies. The distribution characteristics of the ozone control areas indicated that during O3 pollution periods, the urban areas with industrial activities and high population densities were primarily controlled by VOCs, and the suburban areas gradually shifted from VOC-limited regimes to transitional regimes and eventually reverted back to VOC-limited regimes. In contrast, the rural and other remote areas with relatively less development were mainly controlled by NOx. The FNR also exhibited periodic variations, with higher values mostly appearing in summer and lower values appearing in winter. This study identifies the main factors contributing to O3 pollution in different regions of China and can serve as a valuable reference for O3 pollution control.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje