Autor: |
Hursin Mathieu, Pakari Oskari, Perret Gregory, Frajtag Pavel, Lamirand Vincent, Pázsit Imre, Dykin Victor, Por Gabor, Nylén Henrik, Pautz Andreas |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
EPJ Web of Conferences, Vol 247, p 08004 (2021) |
Druh dokumentu: |
article |
ISSN: |
2100-014X |
DOI: |
10.1051/epjconf/202124708004 |
Popis: |
Recently a joint project has been carried out between the Paul Scherrer Institut, the Ecole Polytechnique Federale de Lausanne and swissnuclear, an industrial partner, in order to determine the axial void distribution in a channel installed in the reflector of the zero power research reactor CROCUS, using neutron noise techniques. The main objective of the present paper is to report on the validation of the results against an alternative measurement technique using gamma-ray attenuation and simulations with the TRACE code. For the gamma-ray attenuation experiments, the channel used in CROCUS is installed out of the core in a Plexiglass water tank. The source and detector are fixed and the channel is moved axially to keep the geometry of the source/detector arrangement untouched. This is key to measure the void effect by gamma attenuation due to the low contrast of this technique. The paper compares the experimental results obtained with both techniques, with the outcomes of simulations carried out with the TRACE code. Even though the quantitative void fraction estimations are not consistent, the trends obtained with the simulation and experimental techniques are the same. The discrepancies between the various experimental techniques and the simulation outcomes are related to the heterogeneous distribution of the water-air mixture in the radial sections of the channel. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|