Autor: |
Johnny Rengifo, Jordan Moreira, Fernando Vaca-Urbano, Manuel S. Alvarez-Alvarado |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 10, p 2241 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17102241 |
Popis: |
Electric motors play a fundamental role in various industries, and their relevance is strengthened in the context of the energy transition. Having efficient tools and techniques to detect and diagnose faults in electrical machines is crucial, as is providing early alerts to facilitate prompt decision-making. This study proposes indicators based on the magnitude of the space vector stator current for detecting and diagnosing incipient inter-turn short circuits (ITSCs) in induction motors (IMs). The effectiveness of these indicators was evaluated using four machine learning methods previously documented in the literature: random forests (RFs), support vector machines (SVMs), the k-nearest neighbor (kNN), and feedforward and recurrent neural networks (FNNs and RNNs). This assessment was conducted using experimental data. The results were compared with indicators based on discrete wavelet transform (DWT), demonstrating the viability of the proposed approach, which opens up a way of detecting incipient ITSCs in three-phase IMs. Furthermore, utilizing features derived from the magnitude of the spatial vector led to the successful identification of the phase affected by the fault. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|