Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats

Autor: Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, Kim GY, Meang EH, Hong JS, Kim SH, Koh SB, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SSA, Yun HI, Kim MK
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: International Journal of Nanomedicine, Vol 2014, Iss Supplement 2, Pp 109-126 (2014)
Druh dokumentu: article
ISSN: 1178-2013
Popis: Yu-Ri Kim,1,* Jong-Il Park,2,* Eun Jeong Lee,1 Sung Ha Park,3 Nak-won Seong,2 Jun-Ho Kim,2 Geon-Yong Kim,2 Eun-Ho Meang,2 Jeong-Sup Hong,2 Su-Hyon Kim,2 Sang-Bum Koh,2 Min-Seok Kim,2 Cheol-Su Kim,4 Soo-Ki Kim,4 Sang Wook Son,5 Young Rok Seo,6 Boo Hyon Kang,7 Beom Seok Han,8 Seong Soo A An,9 Hyo-In Yun,9 Meyoung-Kon Kim1 1Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Korea; 2General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea; 3Department of Biochemistry, University of Bath, Bath, UK; 4Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon, Korea; 5Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul, Korea; 6Nonclinical Research Institute, Chemon Inc., Yongin, Gyeonggi, Korea; 7Toxicological Research Center, Hoseo University, Ansan, Chungnam, Korea; 8Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi, Korea; 9College of Veterinary Medicine, Chungnam National University, Daejon, Korea *These authors contributed equally to this work Abstract: Nanoparticles (NPs) are used commercially in health and fitness fields, but information about the toxicity and mechanisms underlying the toxic effects of NPs is still very limited. The aim of this study is to investigate the toxic effect(s) of 100 nm negatively (ZnOAE100[-]) or positively (ZnOAE100[+]) charged zinc oxide (ZnO) NPs administered by gavage in Sprague Dawley rats, to establish a no observed adverse effect level, and to identify target organ(s). After verification of the primary particle size, morphology, hydrodynamic size, and zeta potential of each test article, we performed a 90-day study according to Organisation for Economic Co-operation and Development test guideline 408. For the 90-day study, the high dose was set at 500 mg/kg and the middle and low doses were set at 125 mg/kg and 31.25 mg/kg, respectively. Both ZnO NPs had significant changes in hematological and blood biochemical analysis, which could correlate with anemia-related parameters, in the 500 mg/kg groups of both sexes. Histopathological examination showed significant adverse effects (by both test articles) in the stomach, pancreas, eye, and prostate gland tissues, but the particle charge did not affect the tendency or the degree of the lesions. We speculate that this inflammatory damage might result from continuous irritation caused by both test articles. Therefore, the target organs for both ZnOAE100(-) and ZnOAE100(+) are considered to be the stomach, pancreas, eye, and prostate gland. Also, the no observed adverse effect level for both test articles was identified as 31.25 mg/kg for both sexes, because the adverse effects were observed at all doses greater than 125 mg/kg. Keywords: zinc oxide nanoparticles, surface charge, 90-day oral dose toxicity, no observed adverse effect level
Databáze: Directory of Open Access Journals