An inverse problem of reconstructing the time-dependent coefficient in a one-dimensional hyperbolic equation

Autor: M. J. Huntul, Muhammad Abbas, Dumitru Baleanu
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-17 (2021)
Druh dokumentu: article
ISSN: 1687-1847
DOI: 10.1186/s13662-021-03608-1
Popis: Abstract In this paper, for the first time the inverse problem of reconstructing the time-dependent potential (TDP) and displacement distribution in the hyperbolic problem with periodic boundary conditions (BCs) and nonlocal initial supplemented by over-determination measurement is numerically investigated. Though the inverse problem under consideration is ill-posed by being unstable to noise in the input data, it has a unique solution. The Crank–Nicolson-finite difference method (CN-FDM) along with the Tikhonov regularization (TR) is applied for calculating an accurate and stable numerical solution. The programming language MATLAB built-in lsqnonlin is used to solve the obtained nonlinear minimization problem. The simulated noisy input data can be inverted by both analytical and numerically simulated. The obtained results show that they are accurate and stable. The stability analysis is performed by using Fourier series.
Databáze: Directory of Open Access Journals