Uncertainty of Rate of Change in Korean Future Rainfall Extremes Using Non-Stationary GEV Model

Autor: Jiyu Seo, Jeongeun Won, Jeonghyeon Choi, Jungmin Lee, Suhyung Jang, Okjeong Lee, Sangdan Kim
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Atmosphere, Vol 12, Iss 2, p 227 (2021)
Druh dokumentu: article
ISSN: 2073-4433
DOI: 10.3390/atmos12020227
Popis: Interest in future rainfall extremes is increasing, but the lack of consistency in the future rainfall extremes outputs simulated in climate models increases the difficulty of establishing climate change adaptation measures for floods. In this study, a methodology is proposed to investigate future rainfall extremes using future surface air temperature (SAT) or dew point temperature (DPT). The non-stationarity of rainfall extremes is reflected through non-stationary frequency analysis using SAT or DPT as a co-variate. Among the parameters of generalized extreme value (GEV) distribution, the scale parameter is applied as a function of co-variate. Future daily rainfall extremes are projected from 16 future SAT and DPT ensembles obtained from two global climate models, four regional climate models, and two representative concentration pathway climate change scenarios. Compared with using only future rainfall data, it turns out that the proposed method using future temperature data can reduce the uncertainty of future rainfall extremes outputs if the value of the reference co-variate is properly set. In addition, the confidence interval of the rate of change of future rainfall extremes is quantified using the posterior distribution of the parameters of the GEV distribution sampled using Bayesian inference.
Databáze: Directory of Open Access Journals