Autor: |
Qian Chen, Binyin Gao, Zhilin Yang, Yong Li, QingWei Zhai, Yangyu Jia, Qiannan Zhang, Xiaokang Gu, Jinghan Zuo, Lei Wang, Tianshuai Wang, Pengbo Zhai, Cheng Yang, Yongji Gong |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-54310-1 |
Popis: |
Abstract The numerous grainboundaries solid electrolyte interface, whether naturally occurring or artificially designed, leads to non-uniform Li metal deposition and consequently results in poor full-battery performance. Herein, a lithium-ion selective transport layer is reported to achieve a highly efficient and dendrite-free lithium metal anode. The layer-by-layer assembled protonated carbon nitride nanosheets present uniform macroscopical structure without grainboundaries. The carbon nitride with ordered pores in basal plane provides high-speed lithium-ion transport channels with low tortuosity. Consequently, the assembled 324 Wh kg−1 pouch cell exhibits 300 stable cycles with a capacity retention of 90.0% and an average Coulombic efficiency up to 99.7%. The ultra-dense Li metal anode makes current collector-free anode possible, achieving high energy density and long cycle life of a 7 Ah cell (506 Wh kg−1, 160 cycles). Thus, it is proved that a macroscopically uniform interface layer with lithium-ion conductive channels could achieve Li metal battery with promising application potential. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|