Radiologic Decision-Making for Imaging in Pulmonary Embolism: Accuracy and Reliability of Large Language Models—Bing, Claude, ChatGPT, and Perplexity
Autor: | Pradosh Kumar Sarangi, Suvrankar Datta, M. Sarthak Swarup, Swaha Panda, Debasish Swapnesh Kumar Nayak, Archana Malik, Ananda Datta, Himel Mondal |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Indian Journal of Radiology and Imaging, Vol 34, Iss 04, Pp 653-660 (2024) |
Druh dokumentu: | article |
ISSN: | 0971-3026 1998-3808 |
DOI: | 10.1055/s-0044-1787974 |
Popis: | Background Artificial intelligence chatbots have demonstrated potential to enhance clinical decision-making and streamline health care workflows, potentially alleviating administrative burdens. However, the contribution of AI chatbots to radiologic decision-making for clinical scenarios remains insufficiently explored. This study evaluates the accuracy and reliability of four prominent Large Language Models (LLMs)—Microsoft Bing, Claude, ChatGPT 3.5, and Perplexity—in offering clinical decision support for initial imaging for suspected pulmonary embolism (PE). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |