Autor: |
Hejda Matěj, Malysheva Ekaterina, Owen-Newns Dafydd, Ali Al-Taai Qusay Raghib, Zhang Weikang, Ortega-Piwonka Ignacio, Javaloyes Julien, Wasige Edward, Dolores-Calzadilla Victor, Figueiredo José M. L., Romeira Bruno, Hurtado Antonio |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nanophotonics, Vol 12, Iss 5, Pp 857-867 (2022) |
Druh dokumentu: |
article |
ISSN: |
2192-8614 |
DOI: |
10.1515/nanoph-2022-0362 |
Popis: |
Excitable optoelectronic devices represent one of the key building blocks for implementation of artificial spiking neurons in neuromorphic (brain-inspired) photonic systems. This work introduces and experimentally investigates an opto-electro-optical (O/E/O) artificial neuron built with a resonant tunnelling diode (RTD) coupled to a photodetector as a receiver and a vertical cavity surface emitting laser as a transmitter. We demonstrate a well-defined excitability threshold, above which the neuron produces optical spiking responses with characteristic neural-like refractory period. We utilise its fan-in capability to perform in-device coincidence detection (logical AND) and exclusive logical OR (XOR) tasks. These results provide first experimental validation of deterministic triggering and tasks in an RTD-based spiking optoelectronic neuron with both input and output optical (I/O) terminals. Furthermore, we also investigate in simulation the prospects of the proposed system for nanophotonic implementation in a monolithic design combining a nanoscale RTD element and a nanolaser; therefore demonstrating the potential of integrated RTD-based excitable nodes for low footprint, high-speed optoelectronic spiking neurons in future neuromorphic photonic hardware. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|