Holomorphy of Osborn loops
Autor: | Isere Abednego Orobosa, Adéníran John Olusola, Jaíyéọlá Tèmítọ́pẹ́ Gbọ́láhàn |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Annals of the West University of Timisoara: Mathematics and Computer Science, Vol 53, Iss 2, Pp 81-98 (2015) |
Druh dokumentu: | article |
ISSN: | 1841-3307 2015-0016 |
DOI: | 10.1515/awutm-2015-0016 |
Popis: | Let (L, ·) be any loop and let A(L) be a group of automorphisms of (L, ·) such that α and φ are elements of A(L). It is shown that, for all x, y, z ∈ L, the A(L)-holomorph (H, ○) = H(L) of (L, ·) is an Osborn loop if and only if xα(yz · xφ−1) = xα(yxλ · x) · zxφ−1. Furthermore, it is shown that for all x ∈ L, H(L) is an Osborn loop if and only if (L, ·) is an Osborn loop, (xα· xρ)x = xα, x(xλ · xφ−1) = xφ−1 and every pair of automorphisms in A(L) is nuclear (i.e. xα·xρ, xλ ·xφ ∈ N(L, ·)). It is shown that if H(L) is an Osborn loop, then A(L, ·) = 𝒫(L, ·)∩Λ(L, ·)∩Φ(L, ·)∩ Ψ(L, ·) and for any α ∈ A(L), α=Leπ=Reϱ−1$\alpha = L_{e\pi } = R_{e\varrho }^{ - 1}$ for some π ∈ Φ(L, ·) and some ϱ ∈ Ψ(L, ·). Some commutative diagrams are deduced by considering isomorphisms among the various groups of regular bijections (whose intersection is A(L)) and the nucleus of (L, ·). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |