Evaluation of the Immunological Efficacy of an LNP-mRNA Vaccine Prepared from Varicella Zoster Virus Glycoprotein gE with a Double-Mutated Carboxyl Terminus in Different Untranslated Regions in Mice

Autor: Yunfei Wang, Han Cao, Kangyang Lin, Jingping Hu, Ning Luan, Cunbao Liu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Vaccines, Vol 11, Iss 9, p 1475 (2023)
Druh dokumentu: article
ISSN: 2076-393X
DOI: 10.3390/vaccines11091475
Popis: Cell-mediated immunity (CMI) plays a key role in the effectiveness of varicella zoster virus (VZV) vaccines, and mRNA vaccines have an innate advantage in inducing CMI. Glycoprotein E (gE) has been used widely as an antigen for VZV vaccines, and carboxyl-terminal mutations of gE are associated with VZV titer and infectivity. In addition, the untranslated regions (UTRs) of mRNA affect the stability and half-life of mRNA in the cell and are crucial for protein expression and antigenic translational efficiency. In this study, three UTRs were designed and connected to the nucleic acid sequence of gE-M, which is double mutated in the extracellular region of gE. Then, mRNA with different nucleic acids was encapsulated in lipid nanoparticles (LNPs), forming three LNP-mRNA VZV vaccines, named gE-M-Z, gE-M-M, and gE-M-P. The immune response elicited by these vaccines in mice was evaluated at intervals of 4 weeks, and the mice were sacrificed 2 weeks after the final immunization. In the results, the gE-M-P group, which retains the nucleic acid sequence of gE-M and is connected to Pfizer/BioNTech’s BNT162b2 UTRs, induced the strongest humoral immune response and CMI. Because CMI is crucial for protection against VZV and for the design of VZV vaccines, this study provides a feasible strategy for improving the effectiveness and economy of future VZV vaccines.
Databáze: Directory of Open Access Journals