Optimization and Characterization of PEG Extraction Process for Tartary Buckwheat-Derived Nanoparticles
Autor: | Jiyue Zhang, Chuang Zhou, Maoling Tan, Yanan Cao, Yuanhang Ren, Lianxin Peng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Foods, Vol 13, Iss 16, p 2624 (2024) |
Druh dokumentu: | article |
ISSN: | 13162624 2304-8158 |
DOI: | 10.3390/foods13162624 |
Popis: | Plant-derived edible nanovesicles serve as crucial nanocarriers for targeted delivery of bioactive substances, including miRNAs and phytochemicals, to specific tissues. They have emerged as a significant focus in precision nutrient delivery research. In this study, Tartary-buckwheat-derived nanoparticles (TBDNs) were isolated and purified using a combination of differential centrifugation and PEG precipitation. A response surface test was employed to optimize the extraction process of TBDNs in terms of yield, total phenol and flavonoid content, as well as antioxidant activity. The results demonstrated that TBDNs exhibited the highest yield and activity at a 10% concentration of PEG, pH 5, and centrifugation temperature of 4 °C. Under these conditions, the measured yield of TBDNs was 1.7795 g/kg, with a total phenol content of 178.648 mg/100 g, total flavonoid content of 145.421 mg/100 g, and DPPH-radical-scavenging rate reaching 86.37%. Characterization through a transmission electron microscope and nanoparticle-size-tracking analyzer revealed that TBDNs possessed a teato-type vesicle structure with dispersed vesicle clusters present within them. Furthermore, the extracted TBDNs were found to have an average particle size of 182.8 nm with the main peak observed at 162.8 nm when tested for particle size distribution analysis. These findings provide a novel method for extracting TBDNs while laying the groundwork for future investigations into their activities. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |