Autor: |
Thorsten B. Wahl, Bo Han, Benjamin Béri |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-54086-4 |
Popis: |
Abstract Time crystals are a dynamical phase of periodically driven quantum many-body systems where discrete time-translation symmetry is broken spontaneously. Time-crystallinity however subtly requires also spatial order, ordinarily related to further symmetries, such as spin-flip symmetry when the spatial order is ferromagnetic. Here we define topologically ordered time crystals, a time-crystalline phase borne out of intrinsic topological order—a particularly robust form of spatial order that requires no symmetry. We show that many-body localization can stabilize this phase against generic perturbations and establish some of its key features and signatures, including a dynamical, time-crystal form of the perimeter law for topological order. We link topologically ordered and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. Topologically ordered time crystals may be realized in programmable quantum devices, as we illustrate for the Google Sycamore processor. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|