A Super (A,D)-Bm-Antimagic Total Covering of Ageneralized Amalgamation of Fan Graphs
Autor: | Ika Hesti Agustin, Dafik Dafik, Siti Latifah, Rafiantika Megahnia Prihandini |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Cauchy: Jurnal Matematika Murni dan Aplikasi, Vol 4, Iss 4, Pp 146-154 (2017) |
Druh dokumentu: | article |
ISSN: | 2086-0382 2477-3344 |
DOI: | 10.18860/ca.v4i4.3758 |
Popis: | All graph in this paper are finite, simple and undirected. Let G, H be two graphs. A graph G is said to be an (a,d)-H-antimagic total graph if there exist a bijective function such that for all subgraphs H’ isomorphic to H, the total H-weights form an arithmetic progression where a, d 0 are integers and m is the number of all subgraphs H’ isomorphic to H. An (a, d)-H-antimagic total labeling f is called super if the smallest labels appear in the vertices. In this paper, we will study a super (a, d)-Bm-antimagicness of a connected and disconnected generalized amalgamation of fan graphs on which a path is a terminal. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |