Homomorphisms of the lattice of slowly oscillating functions on the half-line
Autor: | Yutaka Iwamoto |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Applied General Topology, Vol 25, Iss 1, Pp 57-70 (2024) |
Druh dokumentu: | article |
ISSN: | 1576-9402 1989-4147 |
DOI: | 10.4995/agt.2024.20267 |
Popis: | We study the space H(SO) of all homomorphisms of the vector lattice of all slowly oscillating functions on the half-line ℍ = [ 0 , ∞ ) . In contrast to the case of homomorphisms of uniformly continuous functions, it is shown that a homomorphism in H(SO) which maps the unit to zero must be zero-homomorphism. Consequently, we show that the space H(SO) without zero-homomorphism is homeomorphic to ℍ x (0, ∞). By describing a neighborhood base of zero-homomorphism, we show that H(SO) is homeomorphic to the space ℍ x (0, ∞) with one point added. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |