Autor: |
Arzu Kunwar, Kenny Kwabena Ablordeppey, Alidad Mireskandari, Kira Sheinerman, Michael Kiefer, Samuil Umansky, Gyanendra Kumar |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Diagnostics, Vol 13, Iss 13, p 2170 (2023) |
Druh dokumentu: |
article |
ISSN: |
2075-4418 |
DOI: |
10.3390/diagnostics13132170 |
Popis: |
We have been developing a novel approach to identify cognitive impairment-related biomarkers by profiling brain-enriched and inflammation-associated microRNA (miRNA) in plasma specimens of cognitively unimpaired and cognitively impaired patients. Here, we present an analytical validation of the novel miRNA panel, CogniMIR®, using two competing quantitative PCR technologies for the expression analysis of 24 target miRNAs. Total RNA from the plasma specimens was isolated using the MagMAX mirVana Kit, and RT-qPCR was performed using stem-loop-based TaqMan and LNA-based qPCR assays. Evaluation of RNA dilution series for our target 24 miRNAs, performed by two operators on two different days, demonstrated that all CogniMIR® panel miRNAs can be reliably and consistently detected by both qPCR technologies, with sample input as low as 20 copies in a qPCR reaction. Intra-run and inter-run repeatability and reproducibility analyses using RNA specimens demonstrated that both operators generated repeatable and consistent Cts, with R2 values of 0.94 to 0.99 and 0.96 to 0.97, respectively. The study results clearly indicate the suitability of miRNA profiling of plasma specimens using either of the qPCR technologies. However, the LNA-based qPCR technology appears to be more operationally friendly and better suited for a CAP/CLIA-certified clinical laboratory. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|